AWS Machine Learning Blog
aws.amazon.com/jp/blogs/machine-learning/
Build a scalable AI video generator using Amazon SageMaker AI and CogVideoX
In recent years, the rapid advancement of artificial intelligence and machine learning (AI/ML) technologies has revolutionized various aspects of digital content creation. One particularly exciting development is the emergence of video generation capabilities, which offer unprecedented opportunities for companies across diverse industries. This technology allows for the creation of short video clips that can be […]

Building trust in AI: The AWS approach to the EU AI Act
The EU AI Act establishes comprehensive regulations for AI development and deployment within the EU. AWS is committed to building trust in AI through various initiatives including being among the first signatories of the EU's AI Pact, providing AI Service Cards and guardrails, and offering educational resources while helping customers understand their responsibilities under the new regulatory framework.

Update on the AWS DeepRacer Student Portal
Starting July 14, 2025, the AWS DeepRacer Student Portal will enter a maintenance phase where new registrations will be disabled. Until September 15, 2025, existing users will retain full access to their content and training materials, with updates limited to critical security fixes, after which the portal will no longer be available.

Accelerate foundation model training and inference with Amazon SageMaker HyperPod and Amazon SageMaker Studio
In this post, we discuss how SageMaker HyperPod and SageMaker Studio can improve and speed up the development experience of data scientists by using IDEs and tooling of SageMaker Studio and the scalability and resiliency of SageMaker HyperPod with Amazon EKS. The solution simplifies the setup for the system administrator of the centralized system by using the governance and security capabilities offered by the AWS services.

Meeting summarization and action item extraction with Amazon Nova
In this post, we present a benchmark of different understanding models from the Amazon Nova family available on Amazon Bedrock, to provide insights on how you can choose the best model for a meeting summarization task.

Building a custom text-to-SQL agent using Amazon Bedrock and Converse API
Developing robust text-to-SQL capabilities is a critical challenge in the field of natural language processing (NLP) and database management. The complexity of NLP and database management increases in this field, particularly while dealing with complex queries and database structures. In this post, we introduce a straightforward but powerful solution with accompanying code to text-to-SQL using a custom agent implementation along with Amazon Bedrock and Converse API.

Accelerate threat modeling with generative AI
In this post, we explore how generative AI can revolutionize threat modeling practices by automating vulnerability identification, generating comprehensive attack scenarios, and providing contextual mitigation strategies.

How Anomalo solves unstructured data quality issues to deliver trusted assets for AI with AWS
In this post, we explore how you can use Anomalo with Amazon Web Services (AWS) AI and machine learning (AI/ML) to profile, validate, and cleanse unstructured data collections to transform your data lake into a trusted source for production ready AI initiatives.

An innovative financial services leader finds the right AI solution: Robinhood and Amazon Nova
In this post, we share how Robinhood delivers democratized finance and real-time market insights using generative AI and Amazon Nova.

Build conversational interfaces for structured data using Amazon Bedrock Knowledge Bases
This post provides instructions to configure a structured data retrieval solution, with practical code examples and templates. It covers implementation samples and additional considerations, empowering you to quickly build and scale your conversational data interfaces.